Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PNAS Nexus ; 3(5): pgae175, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38715727

RESUMEN

During biological invasion process, species encounter new environments and partially escape some ecological constraints they faced in their native range, while they face new ones. The Asian tiger mosquito Aedes albopictus is one of the most iconic invasive species introduced in every inhabited continent due to international trade. It has also been shown to be infected by a prevalent yet disregarded microbial entomoparasite Ascogregarina taiwanensis. In this study, we aimed at deciphering the factors that shape the global dynamics of A. taiwanensis infection in natural A. albopictus populations. We showed that A. albopictus populations are highly colonized by several parasite genotypes but recently introduced ones are escaping it. We further performed experiments based on the invasion process to explain such pattern. To that end, we hypothesized that (i) mosquito passive dispersal (i.e. human-aided egg transportation) may affect the parasite infectiveness, (ii) founder effects (i.e. population establishment by a small number of mosquitoes) may influence the parasite dynamics, and (iii) unparasitized mosquitoes are more prompt to found new populations through active flight dispersal. The two first hypotheses were supported as we showed that parasite infection decreases over time when dry eggs are stored and that experimental increase in mosquitoes' density improves the parasite horizontal transmission to larvae. Surprisingly, parasitized mosquitoes tend to be more active than their unparasitized relatives. Finally, this study highlights the importance of global trade as a driver of biological invasion of the most invasive arthropod vector species.

2.
Front Public Health ; 11: 1239874, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38145086

RESUMEN

Mosquito-borne infectious diseases (MBIDs) present significant public health risks within tropical and subtropical regions. However, the rapid spread of MBIDs from these areas to temperate regions increase the risk of their emergence in nonendemic regions, i.e., regions where diseases are still sporadic and not sustained in the population. Raising awareness about preventive measures and protective behaviors is of primary importance to face the risks of vector-borne diseases. In this context, the number of studies on knowledge, attitude, and practice (KAP) about mosquitoes and MBIDs has grown rapidly in response to the need to identify knowledge and practices in nonendemic countries to fight mosquito proliferation. Building upon the recent developments in this field, we conducted the first-ever literature review to examine KAP studies conducted in nonendemic regions. Our aim was to identify the community's knowledge and attitudes that shape practices concerning the prevention of MBIDs. We used specific keywords regarding the scope of this review and then selected studies that were performed in nonendemic regions for MBIDs, including regions located in European countries, the USA or Asia. We identified 32 KAP studies, the oldest from 2003. The findings in the reviewed studies show that survey participants generally possessed a rather good understanding of mosquito breeding sites. However, there were notable variations in knowledge and perception of MBIDs, primarily linked to the geographic location of the survey and the prevalence of infectious outbreaks related to mosquito transmission. These findings highlight the significant influence of knowledge and awareness in fostering effective mosquito control practices. Moreover, socioeconomic status, particularly educational attainment, and respondents' gender emerged as key determinants in explaining the variability of appropriate practices. The survey results thus show the crucial role of knowledge, emphasizing the need for widespread awareness and information campaigns, encompassing both appropriate practices and efficient mosquito control methods. Understanding the interaction between these factors could provide good guidelines for implementing awareness plans and ultimately motivate the population to actively fight against mosquito proliferation and MBIDs development.


Asunto(s)
Culicidae , Enfermedades Transmitidas por Mosquitos , Animales , Humanos , Mosquitos Vectores , Conocimientos, Actitudes y Práctica en Salud , Brotes de Enfermedades/prevención & control
3.
FEMS Microbiol Ecol ; 99(12)2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37898556

RESUMEN

Recent studies show that mosquito-microbiota interactions affects vector competence and fitness. We investigated if host antibodies modifying microbiota impact mosquito physiology. We focused on three prevalent bacteria (Acinetobacter, Pantoea, and Chryseobacterium), originally isolated from the Asian tiger mosquito Aedes albopictus. Our goal was to assess the impact of host antibodies on mosquito microbiota and life traits. Female mosquitoes were fed with blood from rabbits immunized with each bacterium or a mock vaccine. We compared various factors, including feeding behavior, survival rates, and reproductive success of the mosquitoes. Interestingly, mosquitoes fed with blood from a Chryseobacterium-immunized rabbit showed a significant increase in fecundity and egg-hatching rate. This outcome correlated with a decrease in the abundance of Chryseobacterium within the mosquito microbiota. While no significant changes were observed in the alpha and beta diversity indexes between the groups, our network analyses revealed an important finding. The antimicrobiota vaccines had a considerable impact on the bacterial community assembly. They reduced network robustness, and altered the hierarchical organization of nodes in the networks. Our findings provide the basis for the rational design of antimicrobiota vaccines to reduce mosquito fitness and potentially induce infection-refractory states in the microbiota to block pathogen transmission.


Asunto(s)
Aedes , Microbiota , Animales , Femenino , Conejos , Aedes/microbiología , Mosquitos Vectores , Fertilidad , Reproducción , Bacterias
4.
J Urban Health ; 100(3): 591-611, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37277669

RESUMEN

Urbanization is one of the leading global trends of the twenty-first century that has a significant impact on health. Among health challenges caused by urbanization, the relationship of urbanization between emergence and the spread of mosquito-borne infectious diseases (MBIDs) is a great public health concern. Urbanization processes encompass social, economic, and environmental changes that directly impact the biology of mosquito species. In particular, urbanized areas experience higher temperatures and pollution levels than outlying areas but also favor the development of infrastructures and objects that are favorable to mosquito development. All these modifications may influence mosquito life history traits and their ability to transmit diseases. This review aimed to summarize the impact of urbanization on mosquito spreading in urban areas and the risk associated with the emergence of MBIDs. Moreover, mosquitoes are considered as holobionts, as evidenced by numerous studies highlighting the role of mosquito-microbiota interactions in mosquito biology. Taking into account this new paradigm, this review also represents an initial synthesis on how human-driven transformations impact microbial communities in larval habitats and further interfere with mosquito behavior and life cycle in urban areas.


Asunto(s)
Culicidae , Animales , Humanos , Ecosistema , Urbanización , Salud Pública , Actividades Humanas
5.
Environ Microbiol Rep ; 15(2): 80-91, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36424842

RESUMEN

Anthropization of Palaeolithic caves open for tourism may favour collembola invasion and result in the formation of black stains attributed to pigmented fungi. However, ecological processes underpinning black stain formation are not fully understood. Here, we tested the hypotheses that black stains from the Apse room of Lascaux Cave display a specific microbiota enriched in pigmented fungi, and that collembola thriving on the stains have the potential to consume and disseminate these black fungi. Metabarcoding showed that the microbiota of black stains and neighbouring unstained parts strongly differed, with in black stains a higher prevalence of Ochroconis and other pigmented fungi and the strong regression of Pseudomonas bacteria (whose isolates inhibited in vitro the growth of pigmented fungi). Isotopic analyses indicated that Folsomia candida collembola thriving on stains could feed on black stain in situ and assimilate the pigmented fungi they were fed with in vitro. They could carry these fungi and disseminate them when tested with complex black stains from Lascaux. This shows that black stain formation is linked to the development of pigmented fungi, which coincides with the elimination of antagonistic pseudomonads, and points towards a key role of F. candida collembola in the dynamics of pigmented fungi.


Asunto(s)
Artrópodos , Ascomicetos , Microbiota , Animales , Colorantes , Ascomicetos/genética , ADN de Hongos
6.
Trends Microbiol ; 31(2): 181-196, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36167769

RESUMEN

Insect sequential development evolves from a simple molt towards complete metamorphosis. Like any multicellular host, insects interact with a complex microbiota. In this review, factors driving the microbiota dynamics were pointed out along their development. Special focus was put on tissue renewal, shift in insect ecology, and microbial interactions. Conversely, how the microbiota modulates its host development through nutrient acquisition, hormonal control, and cellular or tissue differentiation was exemplified. Such modifications might have long-term carry-over effects on insect physiology. Finally, remarkable microbe-driven control of insect behaviors along their life cycle was highlighted. Increasing knowledge of those interactions might offer new insights on how insects respond to their environment as well as perspectives on pest- or vector-control strategies.


Asunto(s)
Insectos , Microbiota , Animales
7.
Microorganisms ; 10(12)2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36557702

RESUMEN

Lascaux Cave is a UNESCO site that was closed to the public following wall surface alterations. Most black stains that had formed on wall surface are stable or receding, but a new type of alteration visually quite different (termed dark zones) developed in Lascaux's Apse room in the last 15 years. Here, we tested the hypothesis that dark zones displayed a different microbial community than black stains previously documented in the same room, using metabarcoding (MiSeq sequencing). Indeed, dark zones, black stains and neighboring unstained parts displayed distinct microbial communities. However, similarly to what was observed in black stains, pigmented fungi such as Ochroconis (now Scolecobasidium) were more abundant and the bacteria Pseudomonas less abundant in dark zones than in unstained parts. The collembola Folsomia candida, which can disseminate microorganisms involved in black stain development, was also present on dark zones. Illumina sequencing evidenced Ochroconis (Scolecobasidium) in all collembola samples from dark zones, as in collembola from black stains. This study shows that the microbial properties of dark zones are peculiar, yet dark zones display a number of microbial resemblances with black stains, which suggests a possible role of collembola in promoting these two types of microbial alterations on wall surfaces.

8.
Parasit Vectors ; 15(1): 439, 2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36419069

RESUMEN

BACKGROUND: The Asian tiger mosquito Aedes albopictus is responsible for the transmission of many arboviruses worldwide and is well adapted to thrive in urban environments. In mainland France, a nonendemic area, this mosquito is responsible for several autochthonous and imported cases of chikungunya and dengue each year. Better management and prevention of mosquito-borne disease transmission in nonendemic areas is thus of global concern. In this context, the aim of this study was to provide a better understanding of mosquito-human interactions as well as human behavior and beliefs in regard to this mosquito species in urban areas. METHODS: We focused on people who participate in community gardens, which are increasingly popular initiatives in metropolitan France and are conducive to the development of tiger mosquitoes. To evaluate community gardeners' knowledge and practices in relation to mosquito management and control, we conducted a knowledge, attitude, and practice (KAP) survey. RESULTS: In contrast to previous KAP studies, we showed that attitudes, more than knowledge, influence the practices of community gardeners in relation to mosquitoes. Interestingly, all gardeners who participated in the survey were concerned about the Asian tiger mosquito and were motivated to incorporate mosquito control methods in their gardens. Moreover, mosquitoes were perceived as nuisances rather than disease vector species. A change in community gardeners' perceptions could facilitate more appropriate behavior to control this species. CONCLUSIONS: This survey reveals the lack of knowledge and awareness of good practices for the efficient control of the Asian tiger mosquito in green urban areas.


Asunto(s)
Aedes , Animales , Humanos , Mosquitos Vectores , Jardines , Control de Mosquitos/métodos , Conocimientos, Actitudes y Práctica en Salud
9.
Microbiome ; 10(1): 138, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-36038937

RESUMEN

BACKGROUND: Plant floral nectars contain natural sugars such as fructose, which are a primary energy resource for adult mosquitoes. Despite the importance of carbohydrates for mosquito metabolism, a limited knowledge is available about the pathways involved in sugar assimilation by mosquitoes and their associated microbiota. To this end, we used 13C-metabolomic and stable isotope probing approaches coupled to high-throughput sequencing to reveal fructose-related mosquito metabolic pathways and the dynamics of the active gut microbiota following fructose ingestion. RESULTS: Our results revealed significant differences in metabolic pathways between males and females, highlighting different modes of central carbon metabolism regulation. Competitive and synergistic interactions of diverse fungal taxa were identified within the active mycobiota following fructose ingestion. In addition, we identified potential cross-feeding interactions between this. Interestingly, there is a strong correlation between several active fungal taxa and the presence of fructose-derived metabolites. CONCLUSIONS: Altogether, our results provide novel insights into mosquito carbohydrate metabolism and demonstrate that dietary fructose as it relates to mosquito sex is an important determinant of mosquito metabolism; our results also further highlight the key role of active mycobiota interactions in regulating the process of fructose assimilation in mosquitoes. This study opens new avenues for future research on mosquito-microbiota trophic interactions related to plant nectar-derived sugars. Video abstract.


Asunto(s)
Aedes , Microbioma Gastrointestinal , Microbiota , Animales , Metabolismo de los Hidratos de Carbono , Femenino , Fructosa , Masculino
10.
Environ Sci Pollut Res Int ; 29(43): 64469-64488, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35864395

RESUMEN

Insects play many important roles in nature due to their diversity, ecological role, and impact on agriculture or human health. They are directly influenced by environmental changes and in particular anthropic activities that constitute an important driver of change in the environmental characteristics. Insects face numerous anthropogenic stressors and have evolved various detoxication mechanisms to survive and/or resist to these compounds. Recent studies highligted the pressure exerted by xenobiotics on insect life-cycle and the important role of insect-associated bacterial microbiota in the insect responses to environmental changes. Stressor exposure can have various impacts on the composition and structure of insect microbiota that in turn may influence insect biology. Moreover, bacterial communities associated with insects can be directly or indirectly involved in detoxification processes with the selection of certain microorganisms capable of degrading xenobiotics. Further studies are needed to assess the role of insect-associated microbiota as key contributor to the xenobiotic metabolism and thus as a driver for insect adaptation to polluted habitats.


Asunto(s)
Microbiota , Xenobióticos , Animales , Efectos Antropogénicos , Bacterias/metabolismo , Humanos , Insectos/fisiología , Xenobióticos/metabolismo
11.
Parasit Vectors ; 15(1): 4, 2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-34983601

RESUMEN

Human and animal pathogens that are transmitted by arthropods are a global concern, particularly those vectored by ticks (e.g. Borrelia burgdorferi and tick-borne encephalitis virus) and mosquitoes (e.g. malaria and dengue virus). Breaking the circulation of pathogens in permanent foci by controlling vectors using acaricide-based approaches is threatened by the selection of acaricide resistance in vector populations, poor management practices and relaxing of control measures. Alternative strategies that can reduce vector populations and/or vector-mediated transmission are encouraged worldwide. In recent years, it has become clear that arthropod-associated microbiota are involved in many aspects of host physiology and vector competence, prompting research into vector microbiota manipulation. Here, we review how increased knowledge of microbial ecology and vector-host interactions is driving the emergence of new concepts and tools for vector and pathogen control. We focus on the immune functions of host antibodies taken in the blood meal as they can target pathogens and microbiota bacteria within hematophagous arthropods. Anti-microbiota vaccines are presented as a tool to manipulate the vector microbiota and interfere with the development of pathogens within their vectors. Since the importance of some bacterial taxa for colonization of vector-borne pathogens is well known, the disruption of the vector microbiota by host antibodies opens the possibility to develop novel transmission-blocking vaccines.


Asunto(s)
Anticuerpos/inmunología , Vectores Artrópodos/inmunología , Transmisión de Enfermedad Infecciosa/prevención & control , Desarrollo de Vacunas/métodos , Animales , Anticuerpos/sangre , Hemolinfa/inmunología , Interacciones Huésped-Patógeno , Humanos , Glándulas Salivales/inmunología
12.
Mol Ecol ; 31(5): 1444-1460, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34905257

RESUMEN

In animals with distinct life stages such as holometabolous insects, adult phenotypic variation is often shaped by the environment of immature stages, including their interactions with microbes colonizing larval habitats. Such carry-over effects were previously observed for several adult traits of the mosquito Aedes aegypti after larval exposure to different bacteria, but the mechanistic underpinnings are unknown. Here, we investigated the molecular changes triggered by gnotobiotic larval exposure to different bacteria in Ae. aegypti. We initially screened a panel of 16 bacterial isolates from natural mosquito breeding sites to determine their ability to influence adult life-history traits. We subsequently focused on four bacterial isolates (belonging to Flavobacterium, Lysobacter, Paenibacillus, and Enterobacteriaceae) with significant carry-over effects on adult survival and found that they were associated with distinct transcriptomic profiles throughout mosquito development. Moreover, we detected carry-over effects at the level of gene expression for the Flavobacterium and Paenibacillus isolates. The most prominent transcriptomic changes in gnotobiotic larvae reflected a profound remodelling of lipid metabolism, which translated into phenotypic differences in lipid storage and starvation resistance at the adult stage. Together, our findings indicate that larval exposure to environmental bacteria trigger substantial physiological changes that impact adult fitness, uncovering a possible mechanism underlying carry-over effects of mosquito-bacteria interactions during larval development.


Asunto(s)
Aedes , Aedes/microbiología , Animales , Bacterias/genética , Ecosistema , Larva/microbiología
13.
Microorganisms ; 9(8)2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34442634

RESUMEN

Following the concept of the holobiont, insect-microbiota interactions play an important role in insect biology. Many examples of host-associated microorganisms have been reported to drastically influence insect biological processes such as development, physiology, nutrition, survival, immunity, or even vector competence. While a huge number of studies on insect-associated microbiota have focused on bacteria, other microbial partners including fungi have been comparatively neglected. Yeasts, which establish mostly commensal or symbiotic relationships with their host, can dominate the mycobiota of certain insects. This review presents key advances and progress in the research field highlighting the diversity of yeast communities associated with insects, as well as their impact on insect life-history traits, immunity, and behavior.

14.
Microorganisms ; 9(8)2021 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-34442667

RESUMEN

Mosquitoes are considered one of the most important threats worldwide due to their ability to vector pathogens. They are responsible for the transmission of major pathogens such as malaria, dengue, zika, or chikungunya. Due to the lack of treatments or prophylaxis against many of the transmitted pathogens and an increasing prevalence of mosquito resistance to insecticides and drugs available, alternative strategies are now being explored. Some of these involve the use of microorganisms as promising agent to limit the fitness of mosquitoes, attract or repel them, and decrease the replication and transmission of pathogenic agents. In recent years, the importance of microorganisms colonizing the habitat of mosquitoes has particularly been investigated since they appeared to play major roles in their development and diseases transmission. In this issue, we will synthesize researches investigating how microorganisms present within water habitats may influence breeding site selection and oviposition strategies of gravid mosquito females. We will also highlight the impact of such microbes on the fate of females' progeny during their immature stages with a specific focus on egg hatching, development rate, and larvae or pupae survival.

15.
Pathogens ; 9(8)2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32752163

RESUMEN

The Asian tiger mosquito Aedes albopictus is a major pathogen vector and one of the world's most invasive species. In recent years, the study of mosquito-associated microbiota has received growing interest for reducing transmission of mosquito-borne pathogens. Most of studies on mosquito microbiota mainly focused on the gut bacteria. However, microorganisms can also colonize other organs and are not restricted to bacteria. In mosquitoes, the crop is the primary storage organ for sugars from the nectar feeding before it is transferred into the midgut for digestion. No study has yet investigated whether this organ can harbor microorganisms in Ae. albopictus. By using high-throughput sequencing, this study is the first to describe the microbiota including both bacteria and fungi in sugar-fed Ae. albopictus males and females. The results showed the presence of diverse and rich bacterial and fungal communities in the crop of both sexes that did not strongly differ from the community composition and structure found in the gut. Altogether, our results provide a thorough description of the crop-associated microbiota in Ae. albopictus which can open new avenues for further studies on trophic interactions between the mosquito and its microbiota.

16.
Pathogens ; 9(7)2020 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-32664706

RESUMEN

The growing expansion of mosquito vectors leads to the emergence of vector-borne diseases in new geographic areas and causes major public health concerns. In the absence of effective preventive treatments against most pathogens transmitted, vector control remains one of the most suitable strategies to prevent mosquito-borne diseases. Insecticide overuse raises mosquito resistance and deleterious impacts on the environment and non-target species. Growing knowledge of mosquito biology has allowed the development of alternative control methods. Following the concept of holobiont, mosquito-microbiota interactions play an important role in mosquito biology. Associated microbiota is known to influence many aspects of mosquito biology such as development, survival, immunity or even vector competence. Mosquito-associated microbiota is composed of bacteria, fungi, protists, viruses and nematodes. While an increasing number of studies have focused on bacteria, other microbial partners like fungi have been largely neglected despite their huge diversity. A better knowledge of mosquito-mycobiota interactions offers new opportunities to develop innovative mosquito control strategies. Here, we review the recent advances concerning the impact of mosquito-associated fungi, and particularly nonpathogenic fungi, on life-history traits (development, survival, reproduction), vector competence and behavior of mosquitoes by focusing on Culex, Aedes and Anopheles species.

17.
Environ Microbiol ; 22(4): 1193-1206, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31943686

RESUMEN

The Asian tiger mosquito Aedes albopictus is a major public health concern because of its invasive success and its ability to transmit pathogens. Given the low availability of treatments against mosquito-borne diseases, vector control remains the most suitable strategy. The methods used thus far are becoming less effective, but recent strategies have emerged from the study of mosquito-associated microorganisms. Although the role of the microbiota in insect biology does not require further proof, much remains to be deciphered in mosquitoes, especially the contribution of the microbiota to host nutrient metabolism. Mosquitoes feed on plant nectar, composed of mostly fructose. We used stable isotope probing to identify bacteria and fungi assimilating fructose within the gut of Ae. albopictus. Mosquitoes were fed a 13 C-labelled fructose solution for 24 h. Differences in the active microbial community according to the sex of mosquitoes were highlighted. The bacterium Lelliottia and the fungi Cladosporium and Aspergillus dominated the active microbiota in males, whereas the bacterium Ampullimonas and the yeast Cyberlindnera were the most active in females. This study is the first to investigate trophic interactions between Ae. albopictus and its microbiota, thus underscoring the importance of the microbial component in nectar feeding in mosquitoes.


Asunto(s)
Aedes/microbiología , Fructosa/metabolismo , Microbioma Gastrointestinal , Animales , Bacterias/metabolismo , Femenino , Hongos/metabolismo , Masculino , Mosquitos Vectores
18.
Environ Microbiol ; 21(12): 4662-4674, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31464044

RESUMEN

Aedes albopictus is a vector of arboviruses and filarial nematodes. Originating from Asia, this mosquito has rapidly expanded its geographical distribution and colonized areas across both temperate and tropical regions. Due to the increase in insecticide resistance, the use of environmentally friendly vector control methods is encouraged worldwide. Using methods based on semiochemicals in baited traps are promising for management of mosquito populations. Interestingly, human skin microbiota was shown to generate volatile compounds that attract the mosquito species Anopheles gambiae and Aedes aegypti. Here, we investigated the composition of skin bacteria from different volunteers and the attractive potential of individual isolates to nulliparous Ae. albopictus females. We showed that three out of 16 tested isolates were more attractive and two were more repulsive. We identified dodecenol as being preferentially produced by attractive isolates and 2-methyl-1-butanol (and to a lesser extent 3-methyl-1-butanol) as being overproduced by these isolates compared with the other ones. Those bacterial volatile organic compounds represent promising candidates but further studies are needed to evaluate their potential application for baited traps improvement.


Asunto(s)
Aedes/fisiología , Anopheles/fisiología , Bacterias/aislamiento & purificación , Piel/microbiología , Piel/parasitología , Adulto , Animales , Bacterias/química , Bacterias/clasificación , Bacterias/metabolismo , Conducta Alimentaria , Femenino , Humanos , Resistencia a los Insecticidas , Masculino , Microbiota , Mosquitos Vectores/fisiología , Compuestos Orgánicos Volátiles/química , Compuestos Orgánicos Volátiles/metabolismo
19.
FEMS Microbiol Ecol ; 94(12)2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30239661

RESUMEN

Recent studies have highlighted the potential role of microbiota in the biology of the Aedes albopictus mosquito vector. This species is highly anthropogenic and exhibits marked ecological plasticity, with a resulting high potential to colonize a wide range of habitats-including anthropized areas-under various climatic conditions. We put forward the hypothesis that climate and anthropogenic activities, such as the use of antibiotics in agriculture and human medicine, might affect the mosquito-associated bacterial community. We thus studied the additive impact of a temperature decrease and antibiotic ingestion on the temporal dynamics of Ae. albopictus survival and its associated bacterial communities. The results showed no effects of disturbances on mosquito survival. However, short-term temperature impacts on bacterial diversity were observed, while both the community structure and bacterial diversity were affected by early antibiotic ingestion. The genera Elizabethkingia, Chryseobacterium and Wolbachia, as well as an unclassified member of the Bacteroidales order were particularly affected. Antibiotics negatively impacted Elizabethkingia abundance, while Chryseobacterium was completely eliminated following both disturbances, to the benefit of Wolbachia and the unclassified Bacteroidales species. These results generated fresh insight into the effects of climate and anthropogenic activities such as the use of antibiotics on mosquito microbiota.


Asunto(s)
Aedes/microbiología , Antibacterianos/farmacología , Disbiosis/inducido químicamente , Microbiota/efectos de los fármacos , Animales , Bacteroidetes/crecimiento & desarrollo , Chryseobacterium/crecimiento & desarrollo , Clima , Flavobacteriaceae/crecimiento & desarrollo , Humanos , Mosquitos Vectores/microbiología , Temperatura , Wolbachia/crecimiento & desarrollo
20.
PLoS One ; 13(4): e0194521, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29641577

RESUMEN

The Asian tiger mosquito Aedes albopictus became of public health concern as it can replicate and transmit viral and filarial pathogens with a strong invasive success over the world. Various strategies have been proposed to reduce mosquito population's vectorial capacity. Among them, symbiotic control of mosquito borne disease offers promising perspectives. Such method is likely to be affected by the dynamics of mosquito-associated symbiotic communities, which might in turn be affected by host genotype and environment. Our previous study suggested a correlation between mosquitoes' origin, genetic diversity and midgut bacterial diversity. To distinguish the impact of those factors, we have been studying the midgut bacterial microbiota of two Ae. albopictus populations from tropical (La Réunion) and temperate (Montpellier) origins under controlled laboratory conditions. the two populations experienced random mating or genetic bottleneck. Microbiota composition did not highlight any variation of the α and ß-diversities in bacterial communities related to host's populations. However, sizes of the mosquitoes were negatively correlated with the bacterial α-diversity of females. Variations in mosquito sex were associated with a shift in the composition of bacterial microbiota. The females' mosquitoes also exhibited changes in the microbiota composition according to their size and after experiencing a reduction of their genetic diversity. These results provide a framework to investigate the impact of population dynamics on the symbiotic communities associated with the tiger mosquito.


Asunto(s)
Aedes/genética , Aedes/microbiología , Larva/fisiología , Animales , Bacterias/genética , Cruzamientos Genéticos , ADN Intergénico , Ambiente , Femenino , Variación Genética , Genotipo , Intestinos/microbiología , Intestinos/fisiología , Masculino , Microbiota , ARN Ribosómico 16S/genética , Ribosomas/metabolismo , Simbiosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...